Appendix A9.1 Noise & Vibration Survey

Contents

Appen	dix A9.1: Noise and Vibration Survey	1
1 Base	line Noise Monitoring	2
1.1	Introduction	2
1.2	Survey Methodology	2
1.3	Survey Results	5
2	Baseline Vibration Monitoring	8
2.1	Introduction	8
2.2	Survey Methodology	8
2.3	Survey Results – Harristown Bus Depot 1	11
2.4	Survey Results – Malahide Road 1	13
3	References	17
4	Calibration Certificates for Monitoring Equipment 1	8
5	Unattended Monitoring Equipment Set Up	30

Appendix A9.1: Noise and Vibration Survey

1 Baseline Noise Monitoring

1.1 Introduction

This report includes the relevant survey details and results associated with baseline noise monitoring undertaken as part of the Lucan to City Centre Core Bus Corridor (hereafter referred to as the Proposed Scheme). The survey has been undertaken to inform the noise and vibration chapter of the Proposed Scheme EIAR.

Survey details and results for each of the noise monitoring locations are included within this report.

1.2 Survey Methodology

1.2.1 Study Area

A full description of the Proposed Scheme can be found in Chapter 4 (Proposed Scheme Description) in Volume 2 of this EIAR. The assessment study area is split into three geographical zones. The range of key noise and vibration sensitive locations along the Proposed Scheme for the three geographic sections are discussed in Table 1.

Table 1: Description of Noise	Sensitive Locations	(NSLs) Across the	Study Area

Geographical Sections	Description of Study Area
N4 Junction 3 to M50 Junction 7	Within the study area of the N4 Junction 3 to M50 Junction 7 the key noise sensitive receptors are residential properties within 50 to 100m of the N4 alignment. These are located along Hillcrest Drive, Ardeevin Drive, Beech Grove, Cherbury Park Avenue and Hermitage Avenue. Additional sensitive receptors within this section include Saint Loman's Hospital and the Hermitage Medical Centre and the Hermitage Medical Clinic.
M50 Junction 7 to Con Colbert Road	Within this study area the key noise sensitive receptors are predominately residential dwellings which bound the north and south of the R148 Palmerstown and Chapelizod Bypass and along the Old Lucan Road. Sensitive residential housing estates within 50 to 100m of the road edge include The Coppice, Hollyville Lawn, Palmerstown Avenue, Palmerstown Drive, Chapelizod Court, Knockmaree Apartments at Chapelizod Hill Road and Liffey Street South. Other sensitive receptors include Stewarts Hospital, CDETB Ballyfermot Training Centre, Muscular Dystrophy Ireland and St Dominic's College Ballyfermot.
Con Colbert Road to City Centre	Within this study area the key noise sensitive receptors are predominately residential dwellings which bound the north and south of the R148 Con Colbert Road and St Johns Road West. There are a number of residential apartment buildings within 50 to 100m of the road adjacent to the junctions with the R111 (The Old Chocolate Factory Apartments) and the Military Road (Heuston South Quarter Development). Other sensitive receptors include St John of God School (special education school) and the grounds of St. Patrick's University Hospital.

1.2.2 Survey Locations

Baseline noise surveys have been conducted at locations representative of the nearest noise sensitive areas which have the potential to be impacted by construction works and/or those likely to be impacted during the Operational Phase of the Proposed Scheme. Both attended and unattended baseline noise measurements were made to inform the assessment.

- Unattended surveys (typically one week in duration) were made at a total of one (1 no.) location.
- Attended surveys (attended day-time measurements), were made at a total of five (5 no.) locations along the length of the Proposed Scheme.

Figure 9.2 in Volume 3 of this EIAR illustrates the baseline noise monitoring locations. Each is discussed in the relevant geographical zone in the following sections.

1.2.2.1 N4 Junction 3 to M50 Junction 7

A total of one long-term unattended monitoring location and one attended survey location were surveyed within this study area. The location reference and a description of survey positions are included in Table 2.

Table 2: Noise Monitoring Locations – N4 Junction 3 to M50 Junction 7

Location	Description of Survey Location							
Unattended Monitoring Locations								
CBC0006UNML001 On driveway in residential front garden to north-west of Mount Andrew Court, to south of N4. In line w closest residential facades to west in Hermitage Way estate, approximately 12m from N4 road edge.								
Attended Monitoring Location	Attended Monitoring Locations							
CBC0006ANML001 In a car park south of N4, to the east of Hermitage Gardens estate. In line with closest reside properties approximately 25m from N4 Junction 3 slip road.								

1.2.2.2 M50 Junction 7 to Con Colbert Road

A total of three attended survey locations were surveyed within this study area. The location reference and a description of survey positions are included in Table 3.

Table 3: Noise Monitoring Locations – M50 Junction 7 to Con Colbert Road

Location	Description of Survey Location							
Attended Monitoring Locations								
CBC0006ANML002	Green area to southeast of R148 Palmerstown and Kennelsfort Road Upper, in line with closest facades in Palmerstown Avenue estate approximately 60m from R148 road edge.							
CBC0006ANML003	On footpath to north of Chapelizod Hill Road, in line with closest residential facades approximately 30m from R148 Chapelizod Bypass road edge flyover.							
CBC0006ANML004	On tarmac in Woodfield Place, in line with closest residential facades approximately 35m south of R148 Con Colbert Road and 8m from railway line, separated by a 1.8m wall.							

1.2.2.3 Con Colbert Road to City Centre

A total of one attended monitoring location was surveyed within this study area. The location reference, and a description survey positions are included in Table 4.

Table 4: Noise Monitoring Locations – Con Colbert Road to City Centre

Location	Description of Survey Location							
Attended Monitoring Locations								
CBC0006ANML005	On footpath to southwest of R148 St Johns Road West / Military Road junction, opposite Heuston Station. In line with façade of commercial NSLs approximately 5m from R148 road edge.							

1.2.3 Survey Periods

Unattended noise surveys were undertaken between 6 August 2020 and 13 August 2020. The specific survey dates for each location are included in the survey result tables in Section 1.3

Attended noise surveys were undertaken on 10 July 2020. The specific survey dates and times for each location are included in the survey results tables in Section 1.3.

1.2.4 Survey Equipment and Personnel

The unattended surveys were undertaken using RION NL-52 sound level meters. The attended surveys were undertaken using either RION NL-52 and Bruel and Kjær 2250L sound level meters. The specific equipment details are summarised in Table 5.

Table 5: Noise Monitoring Equipment

Survey Type	Equipment	Serial Number	Calibration Date
Unattended	Rion NL-52	998411	22/01/2020
Attended	Bruel and Kjær 2250L	3008402	04/11/2019

Calibration certificates of the monitoring equipment are appended to this report.

For the unattended survey, a Rion WS-15 Outdoor Microphone Protection System with microphone extension cable and outdoor peli-case was used. An image of the equipment installed at the unattended monitoring location is included in this report. The surveys were conducted by Jack Brennan and Alex Ryan, acoustic technicians, AWN Consulting.

1.2.5 Survey Parameters

The following noise parameters were measured and are discussed within this report.

 $L_{Aeq,T}$ is the A-weighted equivalent continuous steady sound level during the sample period and effectively represents an average value of the defined measurement period, T.

L_{Aeq,16hr} refers to the ambient daytime period between 07:00 and 23:00hrs.

 $L_{A10,T}$ is the A-weighted sound level that is exceeded for 10% of the sample period; this parameter gives an indication of the upper limit of fluctuating noise such as that from road traffic. The T is the sample period the parameter is measured over.

L_{A10,18hr} is the L_{A10} parameter between 06:00 and 00:00hrs as defined within the Calculation of Road Traffic Noise (hereafter referred to as CRTN) (UK Department of Transport 1998).

 $L_{A90,T}$ is the A-weighted sound level that is exceeded for 90% of the sample period; generally used to quantify background noise. The T is the sample period the parameter is measured over.

LA90,16hr, refers to the background daytime noise level between 07:00 and 23:00hrs

LA90,8hr, refers to the background night-time noise level between 23:00 and 07:00hrs

The L_{den} parameter is also discussed within the report. For long-term survey locations, this parameter is derived from the L_{Aeq} data over each 24 hour period as is defined as follows:

 L_{den} is the 24hour noise rating level determined by the averaging of the L_{day} with the $L_{evening}$ (plus a 5dB penalty) and the L_{night} (plus a 10dB penalty). L_{den} is calculated using the following formula, as defined within the Environmental Noise Regulations (S.I.140 / 2006):

$$L_{den} = 10 \log \left(\frac{1}{24}\right) \left(12 * \left(10^{\frac{Lday}{10}}\right) + 4 * \left(10^{\frac{Levening+5}{10}}\right) + 8 * \left(10^{\frac{Lnight+10}{10}}\right)\right)$$

Where:

- L_{day} is the A-weighted long-term average sound level as defined in ISO 1996-2, determined over all the day periods of a year. The 12hr daytime period is between 07:00 to 19:00hrs.
- L_{evening} is the A-weighted long-term average sound level as defined in ISO 1996-2, determined over all the evening periods of a year. The 4hr evening period is between 19:00 to 23:00hrs.
- L_{night} is the A-weighted long-term average sound level as defined in ISO 1996-2, determined over all the night periods of a year. The 8hr night-time period is between 23:00 to 07:00hrs.

1.2.6 Survey Procedure

Noise measurements were conducted in general accordance with the guidance contained in ISO 1996-1:2016 Acoustics – Description measurement and assessment and environmental noise. Part 1: Basic quantities and

assessment procedures (ISO 2016) and ISO 1996-2:2017 Part 2: Determination of sound pressure levels (ISO 2017).

1.2.6.1 Unattended Measurements

For the unattended noise survey, the monitoring equipment was installed within the private grounds of a residential property. The microphone was extended to a height of approximately 1.5m above ground. The equipment was set to log for 15 minute intervals on a continual basis over a one-week period.

1.2.6.2 Attended Measurements

Attended noise surveys were undertaken at public locations at positions representative of the adjacent noise sensitive locations (e.g. on green areas in residential areas, footpaths, parks etc.). For all attended surveys, the microphone was positioned at height of approximately 1.2m above ground.

The attended surveys were undertaken in accordance with the shortened measurement procedure described in CRTN and Transport Infrastructure Ireland's (TII) document Guidelines for the Treatment of Noise and Vibration on National Road (TII 2004).

This methodology involves a method whereby $L_{A10(18hour)}$ and L_{den} values are obtained through a combination of measurement and calculation as follows:

- Noise level measurements are undertaken at the chosen location over three consecutive hours between 10:00 and 17:00hrs.
- Each sample period was measured over a 15 minute duration.
- The L_{A10(18hour) for} the location is derived by subtracting 1 dB from the arithmetic average of the three hourly sample values, i.e.
 - $L_{A10(18hour)} = ((\sum L_{A10(15 minutes)}) \div 3) 1 dB.$
- The derived L_{den} value is calculated from the $L_{A10(18hour)}$ value, i.e. $L_{den} = 0.86 \times L_{A10(18hr)} + 9.86 \text{ dB}.$

1.3 Survey Results

1.3.1 N4 Junction 3 to M50 Junction 7

1.3.1.1 Unattended Surveys

The unattended noise survey results recorded during the baseline surveys within this study area are presented in Table 6.

Survey Date		Day	time		Evening		Night-Time				
	LAeq,16hr Lday LA10,16hr LA90,16hr		L _{evening}	L _{night}	L _{A10,8hr}	L _{A90,8hr}					
CBC0006UNML001	CBC0006UNML001										
06/08/2020	69	70	70	65	67	63	65	49	72		
07/08/2020	70	71	71	67	69	62	66	50	72		
08/08/2020	67	68	69	63	66	61	64	47	70		
09/08/2020	67	67	69	62	67	63	65	49	71		
10/08/2020	69	70	71	65	68	64	66	51	72		
11/08/2020	69	70	71	65	67	63	66	48	72		
12/08/2020	69	70	70	65	67	63	65	47	71		
Average	69	70	70	65	67	63	65	49	71		

Table 6: Unattended Noise Survey Results for N4 Junction 3 to M50 Junction 7

Road traffic from the N4 Lucan Road is the dominant noise source at the monitoring position in the vicinity of the Proposed Scheme. During daytime periods, average ambient noise levels were recorded in the order of 69 dB LAeq,16hr. Average background daytime noise levels were measured in the order of 65 dB LA90,16hr.

Night-time noise levels at the monitoring locations are dominated by road traffic from the N4 Lucan Road. Average ambient night-time noise levels were measured in the order of 63 dB $L_{Aeq,8hr}$. Average background noise levels during this time period were measured in the order of 49 dB $L_{A90,8hr}$.

The measured L_{den} values at this monitoring location were in the order of 71 dB L_{den}.

1.3.1.2 Attended Surveys

The attended noise survey results recorded during the baseline surveys within this study area are presented in Table 7.

Attended Location	Date	Start Time	Measured Noise Levels (dB re.2x10 ⁻⁵ Pa)			Derived L _{den}	Survey Notes
			L _{Aeq}	L _{A10}	L _{A90}		
		14:34	67	69	65		
CBC0006ANML001	10/07/2020	15:20	67	69	64	68	Road traffic noise from N4 dominant noise source.
		16:14	68	69	65		

Table 7: Attended Noise Survey Results for N4 Junction 3 to M50 Junction 7

1.3.2 M50 Junction 7 to Con Colbert Road

1.3.2.1 Attended Surveys

The attended noise survey results recorded during the baseline surveys within this study area are presented in Table 8.

Attended Location	Date	Start Time	Measured Noise Levels (dB re.2x10⁵Pa)		Derived L _{den}	Survey Notes	
			L _{Aeq}	L _{A10}	L _{A90}		
		14:10	59	61	57		Road traffic noise from R148 Palmerstown
CBC0006ANML002	10/07/2020	14:58	60	61	57	62	Bypass and Kennelsfort Road Upper
		15:45	60	62	58		dominant noise source.

Attended Location	Date	Start Time	Measured Noise Levels (dB re.2x10⁵Pa)		Derived L _{den}	Survey Notes	
			L _{Aeq}	L _{A10}	L _{A90}		
		11:05	64	68	53		Road traffic noise from Chapelizod Hill Road and R148 Chapelizod Bypass dominant noise source, drilling noise.
CBC0006ANML003	10/07/2020	12:27	73 ¹	69	55	68	Road traffic noise from Chapelizod Hill Road and R148 Chapelizod Bypass dominant noise source, with load motorbikes passing by at end of measurement.
		13:47	64	69	53	•	Road traffic noise from Chapelizod Hill Road and R148 Palmerstown Bypass dominant noise source, faint construction noise, dogs barking.
		10:41	54	56	50		Road traffic noise from R148 Con Colbert Road dominant noise source with intermittent train pass-by.
CBC0006ANML004	10/07/2020	12:02	56	58	53	58	Road traffic noise from R148 Con Colbert Road dominant noise source.
		13:25	56	57	51		Road traffic noise from R148 Con Colbert Road dominant noise source, helicopter flyover.

1.3.3 Con Colbert Road to City Centre

1.3.3.1 Attended Surveys

The attended noise survey results recorded during the baseline surveys within this study area are presented in Table 9.

Attended Location	Date	Start Time	Measured Noise Levels (dB re.2x10⁻⁵Pa)		Derived L _{den}	Survey Notes	
				L _{A10}	L _{A90}		
		10:03	73	75	62		Road traffic noise from R148 St Johns Road West dominant noise source, beeping from pedestrian crossing, truck in idle nearby, distant construction noise, siren.
CBC0006ANML005	10/07/2020	11:37	73	75	62	73	Road traffic noise from R148 St Johns Road West dominant noise source, beeping from pedestrian crossing, distant construction noise with drilling.
		13:01	71	74	58		Road traffic noise from R148 St Johns Road West dominant noise source, beeping from pedestrian crossing, truck in idle nearby, distant construction noise.

¹ Noise monitoring undertaken at CBC0006ANML003 during the second 15-minute measurement period was elevated due to erroneous interference at end of measurement. Average calculated based on first and third measurement periods.

2 Baseline Vibration Monitoring

2.1 Introduction

This section includes the relevant survey details and results associated baseline vibration surveys conducted as part of the overall Bus Connects Dublin – Core Bus Corridor Infrastructure Works (hereafter referred to as the Proposed Works). Baseline vibration data obtained from this study has been used to inform individual Bus Connects Core Bus Corridor Schemes.

2.2 Survey Methodology

2.2.1 Survey Locations

Attended vibration monitoring was undertaken at sample locations adjacent to existing bus lanes within Dublin City. The surveys were undertaken to obtain typical baseline vibration levels along roads with both mixed vehicular traffic lanes and individual bus lanes. This information has been used to inform the operational vibration impact assessment for the Proposed Scheme.

Surveys were also undertaken along an access road to the Harristown Bus Depot, Horizon Logistics Park, Swords, Co. Dublin, to obtain a measurement of vibration relating to specific bus drive by in isolation at a controlled sampling location to characterise the specific vibration level associated with buses in the absence of other traffic. A description of the survey locations is set out in Table 10.

Vibration Monitoring Locations	Description of Survey Location
AVML001	Harristown – Entrance Road to Bus Depot, midway along inbound road, 5m from road edge
AVML002	Harristown – Roundabout at Bus Depot entrance, buses entering depot, 5m from road edge
AVML003	Harristown – Roundabout at Bus Depot entrance, buses exiting depot, 5m from road edge
AVML004	Harristown – Entrance Road to Bus Depot, midway along outbound road, 5m from road edge
AVML005	Harristown – Entrance Road to Bus Depot, midway along inbound road, 7m from road edge
AVML006	Malahide Road / St. Johns Court – 5m from edge of Inbound Bus Lane
AVML007	Malahide Road / St. Johns Court – 10m from edge of Inbound Bus Lane
AVML008	Malahide Road / Donnycarney Church – 2.5m from edge of Inbound Bus Lane
AVML009	Malahide Road– 2.5m from edge of outbound Bus Lane

Table 10: Vibration Monitoring Locations

The survey locations undertaken along the Harristown Bus Depot entrance are illustrated in Figure 1. The survey locations undertaken along the Malahide Road are illustrated in Figure 2.

Figure 1: Vibration Monitoring Locations Harristown Bus Depot (source Google Earth)

Figure 2: Vibration Monitoring Locations Malahide Road (source Google Earth)

2.2.2 Survey Periods

Vibration monitoring was undertaken on the following dates:

- AVML001 AVML005 : 30 July 2020; and
- AVML005 AMML009: 13 August 2020

2.2.3 Survey Equipment and Personnel

The survey was undertaken using a RION VM-56 vibration meter (S/N 680043) with PV-83D tri-axial accelerometer. Calibration certificate of monitoring equipment are included within this report.

The surveys were conducted by Alex Ryan and David O'Donoghue, acoustic technicians, AWN Consulting.

2.2.4 Survey Procedure

Vibration measurements were conducted in general accordance with the guidance contained in British Standard BS 7385. Part 1: Guide for measurement of vibrations and evaluation of their effects on buildings (1990).

Vibration was measured in the three orthogonal axes. The accelerometer was secured in place with a 5kg sandbag at all monitoring locations.

The equipment was set to log for 1 minute intervals on a continual basis with an instantaneous storage interval of 100ms. Vibration monitoring periods at AVML001 to AVML005 along the entrance road to Harristown Bus Depot were undertaken for a period of 15 minutes at each position. Vibration monitoring periods at AVML006 to AVML009 along the Malahide Road were undertaken for a period of 30 minutes at each position.

2.2.5 Survey Parameters

The following vibration parameters are discussed within this report.

PPVPeak Particle Velocity (PPV) is a measure of the velocity of vibration displacement in terms of millimetres per second (mm/s). It is defined as follows within BS 7385: (1990) as:

"the maximum instantaneous velocity of a particle at a point during a given time interval"

VDV Vibration Dose Value (VDV) is an evaluation of human exposure to vibration in buildings. It defines a relationship that yields a consistent assessment of continuous, intermittent, occasional and impulsive vibration and correlates well with subjective response. It is defined as follows within British Standard BS 6472: (2008) Guide to evaluation of human exposure to vibration in buildings (2008): Part 1 - Vibration sources other than blasting, as:

"The VDV is the fourth root of the integral of the fourth power of acceleration after it has been frequencyweighted (as defined in BS6472: 2008). The frequency-weighted acceleration is measured in m/s2 and the time period over which the VDV is measured is in seconds. This yields VDVs in m/s1.75"

The frequency weightings used in the BS 6472 (2008) document is Wb weighting for vertical axis and Wd for the horizontal axes.

2.3 Survey Results – Harristown Bus Depot

The vibration survey results measured at each location are presented for each pass by event (bus drive by) in terms of the PPV parameter in mm/s and in terms of the VDV parameter in m/s^{1.75} for each axis.

2.3.1 Location AVML001

Table 11 presents the results of vibration values associated with individual bus drive events by during the monitoring period at this location.

Event Time	PPV, mm/s			VDV, _b , m/s ^{1.75}		
	x	Y	z	X	Y	Z
14:57	0.05	0.05	0.06	0.0003	0.0003	0.0020
15:01	0.03	0.04	0.04	0.0002	0.0003	0.0016
15:02	0.03	0.03	0.03	0.0002	0.0002	0.0008
15:03	0.02	0.04	0.04	0.0001	0.0002	0.0016
15:04	0.03	0.02	0.06	0.0002	0.0002	0.0022
15:05	0.04	0.05	0.08	0.0002	0.0002	0.0028
15:06	0.03	0.04	0.03	0.0002	0.0002	0.0013
15:07	0.03	0.04	0.05	0.0002	0.0002	0.0018
Minimum event	0.02	0.02	0.03	0.0001	0.0002	0.0008
Maximum event	0.05	0.05	0.08	0.0003	0.0003	0.0028

Table 11: Vibration Monitoring Results at ANML001

2.3.2 Location AVML002

Table 12 presents the results of vibration values associated with individual bus drive events by during the monitoring period at this location.

Event Time	PPV, mm/s			VDV, _b , m/s ^{1.75}		
	X	Y	Z	X	Y	z
15:22	0.03	0.03	0.08	0.0002	0.0002	0.0019
15:26	0.02	0.03	0.03	0.0002	0.0002	0.0012
15:29	0.02	0.07	0.09	0.0002	0.0003	0.0014
15:30	0.02	0.02	0.07	0.0001	0.0002	0.0019
15:31	0.03	0.04	0.06	0.0002	0.0002	0.0024
15:32	0.02	0.03	0.07	0.0002	0.0002	0.0022
15:33	0.03	0.03	0.06	0.0002	0.0002	0.0014
15:34	0.02	0.02	0.04	0.0001	0.0002	0.0016
Minimum event	0.03	0.07	0.09	0.0002	0.0003	0.0024
Maximum event	0.02	0.02	0.03	0.0001	0.0002	0.0012

2.3.3 Location AVML003

Table 13 presents the results of vibration values associated with individual bus drive events by during the monitoring period at this location.

Table 13: Vibration Monitoring Results at ANML003	Table 13:	Vibration Monitoring Results at ANML003	
---	-----------	---	--

Event Time	PPV, mm/s			VDV, _{b,d} , m/s ^{1.75}			
	x	Y	z	x	Y	Z	
15:40	0.06	0.06	0.09	0.0003	0.0003	0.0031	
15:43	0.07	0.05	0.07	0.0003	0.0003	0.0027	
15:44	0.04	0.05	0.06	0.0002	0.0003	0.0021	
15:45	0.07	0.05	0.07	0.0003	0.0003	0.0032	
15:49	0.03	0.03	0.03	0.0002	0.0002	0.0014	
15:50	0.06	0.06	0.05	0.0003	0.0004	0.0027	
Minimum event	0.07	0.06	0.09	0.0003	0.0004	0.0032	
Maximum event	0.03	0.03	0.03	0.0002	0.0002	0.0014	

2.3.4 Location AVML004

Table 14 presents the results of vibration values associated with individual bus drive events by during the monitoring period at this location.

 Table 14:
 Vibration Monitoring Results at ANML004

Event Time	PPV, mm/s			VDV, _b , m/s ^{1.75}		
	X	Y	Z	X	Y	Z
16:04	0.08	0.12	0.1	0.0006	0.0008	0.0060
16:06	0.09	0.1	0.13	0.0004	0.0006	0.0061
16:08	0.1	0.13	0.11	0.0005	0.0008	0.0049
16:09	0.07	0.1	0.12	0.0005	0.0006	0.0049
16:10	0.11	0.12	0.15	0.0006	0.0007	0.0072
16:11	0.08	0.09	0.1	0.0005	0.0006	0.0046
16:12	0.07	0.08	0.11	0.0004	0.0006	0.0059
16:13	0.07	0.09	0.11	0.0004	0.0005	0.0054
Minimum event	0.11	0.13	0.15	0.0006	0.0008	0.0072
Maximum event	0.07	0.08	0.1	0.0004	0.0005	0.0046

2.3.5 Location AVML005

Table 15 presents the results of vibration values associated with individual bus drive events by during the monitoring period at this location.

 Table 15: Vibration Monitoring Results at ANML005

Event Time	PPV, mm/s			VDV, _b , m/s ^{1.75}		
	x	Y	z	x	Y	Z
16:36	0.03	0.02	0.03	0.0002	0.0002	0.0013
16:39	0.02	0.03	0.03	0.0002	0.0002	0.0017
16:40	0.03	0.04	0.04	0.0002	0.0003	0.0015

Event Time	PPV, mm/s			VDV, _b , m/s ^{1.75}		
	x	Y	z	x	Y	Z
16:44	0.03	0.04	0.06	0.0002	0.0003	0.0021
16:46	0.03	0.03	0.03	0.0002	0.0002	0.0012
16:47	0.03	0.03	0.03	0.0002	0.0002	0.0013
16:48	0.03	0.03	0.04	0.0002	0.0002	0.0012
Minimum event	0.02	0.02	0.03	0.0002	0.0002	0.0012
Maximum event	0.03	0.04	0.06	0.0002	0.0003	0.0021

2.4 Survey Results – Malahide Road

2.4.1 Location AVML006

Table 16 presents the results of vibration values measured during each 1 minute sample period at this location with periods during a bus or HGV drive by noted.

Event Time	PPV, mm/s			VDV,,, m/s ^{1.7}	Notes		
	X	Y	Z	X	Y	Z	-
11:23	0.03	0.03	0.07	0.0002	0.0002	0.0020	
11:24	0.03	0.02	0.06	0.0002	0.0001	0.0018	
11:25	0.03	0.03	0.10	0.0002	0.0002	0.0030	Bus
11:26	0.02	0.02	0.06	0.0002	0.0002	0.0015	HGV
11:27	0.03	0.03	0.07	0.0002	0.0002	0.0030	
11:28	0.02	0.02	0.05	0.0001	0.0001	0.0019	
11:29	0.05	0.03	0.08	0.0002	0.0002	0.0033	Bus
11:30	0.04	0.16	0.17	0.0002	0.0008	0.0027	HGV
11:31	0.02	0.02	0.03	0.0001	0.0001	0.0017	
11:32	0.04	0.05	0.07	0.0002	0.0002	0.0029	HGV
11:33	0.03	0.03	0.05	0.0002	0.0002	0.0020	
11:34	0.02	0.02	0.04	0.0002	0.0001	0.0015	Bus
11:35	0.04	0.04	0.13	0.0002	0.0002	0.0050	HGV
11:36	0.02	0.02	0.04	0.0001	0.0002	0.0015	
11:37	0.02	0.02	0.05	0.0002	0.0002	0.0020	Bus
11:38	0.02	0.02	0.03	0.0001	0.0001	0.0014	
11:39	0.04	0.03	0.10	0.0002	0.0002	0.0037	
11:40	0.03	0.04	0.12	0.0002	0.0002	0.0026	
11:41	0.07	0.06	0.15	0.0003	0.0002	0.0056	
11:42	0.05	0.03	0.11	0.0002	0.0002	0.0040	
11:43	0.04	0.04	0.05	0.0002	0.0002	0.0023	HGV
11:44	0.03	0.08	0.08	0.0002	0.0004	0.0021	
11:45	0.03	0.03	0.05	0.0002	0.0002	0.0025	HGV
11:46	0.04	0.04	0.06	0.0002	0.0002	0.0027	HGV
11:47	0.02	0.03	0.04	0.0001	0.0002	0.0012	
11:48	0.04	0.04	0.10	0.0003	0.0002	0.0036	

Table 16: Vibration Monitoring Results at ANML006

Event Time	PPV, mm/s			VDV, _b , m/s ^{1.7}	VDV,,, m/s ^{1.75}		
	X	Y	Z	X	Y	Z	
11:49	0.06	0.04	0.08	0.0003	0.0002	0.0028	
11:50	0.03	0.02	0.05	0.0002	0.0002	0.0020	
11:51	0.03	0.04	0.05	0.0002	0.0003	0.0021	
11:52	0.04	0.05	0.21	0.0003	0.0003	0.0053	
Maximum all traffic	0.07	0.16	0.17	0.0003	0.0008	0.0056	
Maximum bus	0.05	0.03	0.10	0.0002	0.0002	0.0033	

2.4.2 Location AVML007

Table 17 presents the results of vibration values measured during each 1 minute sample period at this location with periods during a bus or HGV drive by noted.

Event Time	me PPV, mm/s			VDV, _b , m/s	S ^{1.75}		Notes
	x	Y	Z	X	Y	Z	
11:55	0.03	0.02	0.04	0.0002	0.0001	0.0011	HGV
11:56	0.03	0.04	0.03	0.0002	0.0002	0.0011	
11:57	0.02	0.06	0.06	0.0002	0.0003	0.0011	
11:58	0.03	0.03	0.02	0.0002	0.0002	0.0004	
11:59	0.02	0.03	0.03	0.0001	0.0002	0.0008	
12:00	0.02	0.02	0.02	0.0001	0.0001	0.0005	
12:01	0.02	0.03	0.02	0.0001	0.0002	0.0005	
12:02	0.03	0.02	0.03	0.0002	0.0002	0.0009	
12:03	0.03	0.03	0.02	0.0002	0.0002	0.0008	
12:04	0.02	0.03	0.02	0.0001	0.0001	0.0004	
12:05	0.02	0.02	0.03	0.0002	0.0002	0.0011	
12:06	0.03	0.03	0.02	0.0002	0.0002	0.0006	Bus
12:07	0.02	0.05	0.05	0.0001	0.0002	0.0008	Bus
12:08	0.02	0.02	0.02	0.0002	0.0001	0.0007	Bus
12:09	0.02	0.02	0.03	0.0001	0.0002	0.0008	
12:10	0.02	0.03	0.02	0.0002	0.0002	0.0005	Bus
12:11	0.02	0.02	0.02	0.0001	0.0002	0.0009	
12:12	0.02	0.02	0.02	0.0001	0.0002	0.0003	
12:13	0.02	0.02	0.02	0.0001	0.0001	0.0007	Bus
12:14	0.02	0.02	0.02	0.0001	0.0002	0.0009	
12:15	0.02	0.02	0.02	0.0001	0.0001	0.0008	
12:16	0.02	0.02	0.02	0.0001	0.0001	0.0005	
12:17	0.02	0.02	0.02	0.0001	0.0001	0.0005	Bus
12:18	0.02	0.03	0.03	0.0002	0.0002	0.0008	
12:19	0.03	0.03	0.03	0.0002	0.0002	0.0010	
12:20	0.02	0.02	0.02	0.0002	0.0002	0.0009	Bus
12:21	0.02	0.02	0.04	0.0001	0.0001	0.0012	

Event Time	PPV, mm/s			VDV,,, m/s ^{1.7}	5		Notes
	X	Y	Z	Х	Y	Z	
12:22	0.02	0.03	0.03	0.0001	0.0002	0.0010	
Maximum all traffic	0.03	0.06	0.06	0.0002	0.0003	0.0012	
Maximum bus	0.03	0.05	0.05	0.0002	0.0002	0.0009	

2.4.3 Location AVML008

Table 18 presents the results of vibration values measured during each 1 minute sample period at this location with periods during a bus or HGV drive by noted.

Event Time	PPV, mm/s			VDV, _b , m/	VDV, _b , m/s ^{1.75}			
	X	Y	Z	X	Y	Z		
12:31	0.02	0.02	0.06	0.0001	0.0001	0.0004	Bus	
12:32	0.02	0.06	0.08	0.0001	0.0003	0.0009		
12:33	0.02	0.03	0.04	0.0001	0.0002	0.0012	Bus	
12:34	0.02	0.02	0.02	0.0001	0.0001	0.0004	HGV	
12:35	0.02	0.02	0.04	0.0002	0.0002	0.0010		
12:36	0.02	0.02	0.02	0.0002	0.0002	0.0006		
12:37	0.02	0.02	0.02	0.0001	0.0001	0.0003		
12:38	0.02	0.03	0.03	0.0001	0.0002	0.0005		
12:39	0.02	0.03	0.02	0.0001	0.0002	0.0005		
12:40	0.03	0.03	0.02	0.0002	0.0002	0.0006		
12:41	0.04	0.03	0.02	0.0003	0.0002	0.0005		
12:42	0.03	0.02	0.03	0.0002	0.0001	0.0013	Bus	
12:43	0.06	0.07	0.18	0.0003	0.0003	0.0057		
12:44	0.01	0.02	0.02	0.0001	0.0001	0.0004	Bus	
12:45	0.02	0.03	0.05	0.0001	0.0002	0.0015		
12:46	0.02	0.02	0.03	0.0001	0.0001	0.0010		
12:47	0.02	0.03	0.03	0.0001	0.0001	0.0007	HGV	
12:48	0.02	0.03	0.03	0.0001	0.0002	0.0010	HGV	
12:49	0.02	0.02	0.02	0.0001	0.0001	0.0005		
12:50	0.02	0.02	0.02	0.0001	0.0001	0.0004		
12:51	0.02	0.02	0.02	0.0001	0.0002	0.0004		
12:52	0.02	0.02	0.02	0.0001	0.0002	0.0005	Bus	
12:53	0.02	0.02	0.03	0.0001	0.0002	0.0009		
12:54	0.02	0.03	0.04	0.0001	0.0002	0.0012		
12:55	0.02	0.02	0.02	0.0001	0.0002	0.0003		
12:56	0.04	0.05	0.23	0.0002	0.0003	0.0056	HGV	
12:57	0.02	0.03	0.05	0.0001	0.0002	0.0017	Bus	
12:58	0.02	0.02	0.04	0.0001	0.0001	0.0012		
12:59	0.02	0.03	0.02	0.0001	0.0002	0.0006		
Maximum all traffic	0.06	0.07	0.23	0.0003	0.0003	0.0057		

Event Time	PPV, mm/s	Y V 7 Y Y 7					Notes
	X	Y	Z	Х	Y	Z	
Maximum bus	0.03	0.03	0.06	0.0002	0.0002	0.0017	

2.4.4 Location AVML009

Table 19 presents the results of vibration values measured during each 1 minute sample period at this location with periods during a bus or HGV drive by noted.

Table 19:	Vibration	Monitoring	Results	at ANML009
10010 101	1 101 011011	monitoring	1.0004110	

Event Time PPV, mm/s			VDV, _b , m/	VDV,,, m/s ^{1.75}			
	X	Y	Z	X	Y	Z	
13:05	0.03	0.02	0.05	0.0001	0.0001	0.0012	
13:06	0.02	0.04	0.03	0.0002	0.0001	0.0011	Bus
13:07	0.04	0.05	0.08	0.0002	0.0002	0.0028	HGV
13:08	0.04	0.05	0.06	0.0002	0.0002	0.0019	
13:09	0.04	0.03	0.03	0.0002	0.0002	0.0011	
13:10	0.03	0.04	0.04	0.0002	0.0001	0.0012	
13:11	0.03	0.04	0.04	0.0002	0.0001	0.0011	
13:12	0.02	0.03	0.04	0.0002	0.0001	0.0012	Bus
13:13	0.03	0.06	0.04	0.0002	0.0003	0.0013	
13:14	0.03	0.04	0.03	0.0002	0.0002	0.0012	Bus
13:15	0.04	0.04	0.04	0.0002	0.0003	0.0014	Bus
13:16	0.04	0.04	0.09	0.0002	0.0001	0.0028	HGV
13:17	0.06	0.06	0.05	0.0002	0.0002	0.0016	
13:18	0.03	0.04	0.05	0.0002	0.0002	0.0016	Bus
13:19	0.02	0.03	0.03	0.0001	0.0001	0.0008	
13:20	0.04	0.04	0.03	0.0002	0.0002	0.0011	Bus
13:21	0.03	0.03	0.03	0.0001	0.0001	0.0011	Bus
13:22	0.04	0.04	0.09	0.0002	0.0002	0.0030	
13:23	0.03	0.03	0.03	0.0001	0.0001	0.0013	
13:24	0.02	0.03	0.05	0.0001	0.0002	0.0012	HGV
13:25	0.03	0.03	0.05	0.0002	0.0002	0.0014	
13:26	0.03	0.05	0.05	0.0002	0.0003	0.0015	Bus
13:27	0.03	0.04	0.04	0.0002	0.0002	0.0012	
13:28	0.02	0.04	0.04	0.0001	0.0002	0.0008	Bus
13:29	0.04	0.05	0.04	0.0003	0.0003	0.0022	
13:30	0.03	0.03	0.08	0.0002	0.0002	0.0022	
13:31	0.04	0.04	0.03	0.0002	0.0002	0.0011	
13:32	0.02	0.02	0.04	0.0001	0.0001	0.0011	
13:33	0.02	0.03	0.04	0.0002	0.0002	0.0014	
13:05	0.03	0.02	0.05	0.0001	0.0001	0.0012	
Maximum all traffic	0.06	0.06	0.09	0.0003	0.0003	0.0030	
Maximum bus	0.04	0.05	0.05	0.0002	0.0003	0.0016	

3 References

ISO 1996-1:2016 Acoustics - Description, measurement and assessment of environmental noise. Part 1: Basic quantities and assessment procedures (ISO 2016).

ISO 1996-2:2017 - Description, measurement and assessment of environmental noise - Part 2: Determination of sound pressure levels (ISO 2017).

Transport Infrastructure Ireland (TII) (previously National Roads Authority (NRA)) Guidelines for the Treatment of Noise and Vibration in National Road Schemes, Revision 1 (TII 2004).

The UK Department of Transport Calculation of Road Traffic Noise (UK Department of Transport 1998).

British Standard Institute (BSI) British Standard (BS) 7385: 1990: Evaluation and measurement for vibration in buildings. Part 1: Guide for measurement of vibrations and evaluation of their effects on buildings. (BSI 1990).

BS 6472-1: 2008 Guide to evaluation of human exposure to vibration in buildings. Part 1 Vibration sources other than blasting (BSI 2008).

Directives and Legislation

S.I. No. 140/2006 – European Communities (Environmental Noise) Regulations 2006.

4 Calibration Certificates for Monitoring Equipment

Rion NL-52 S/N 998411

MEASUREMENT	SYSTEMS	CERTIFICAT OF CALIBRATIC	Hac	MRA UKAS CALIBRATION 0653
Date of Issue: 22	January 2020	Certifica	ate Number: U	CRT20/1094
Issued by: ANV Measurement Sys Beaufort Court 17 Roebuck Way Milton Keynes MK5 8H Telephone 01908 64284 E-Mail: info@noise-and-vi Acoustics Noise and Vibration Ltd Acoustics Noise and Vibration Ltd	L 46 Fax 01908 6428 -vibration.co.uk ibration.co.uk	K. Mistry		of 2 Pages
Customer	AWN Consultir The Tecpro Bu	ng		
Order No.	AWNC150120			
Description Identification	Sound Level M Manufacturer	eter / Pre-amp / Microph Instrument	one / Associated <i>Type</i>	Calibrator Serial No. / Version
dentification		Sound Level Meter	21	
	Rion Rion Rion Rion Bion	Firmware Pre Amplifier Microphone	NL-52 NH-25 UC-59 NC-74	00998411 2.0 98625 15917 34536109
	Rion Rion	Firmware Pre Amplifier Microphone Calibrator	NH-25 UC-59 NC-74	2.0 98625
Performance Class Test Procedure	Rion Rion Rion 1 TP 2.SLM 6167 Procedures from	Firmware Pre Amplifier Microphone Calibrator Calibrator adaptor typ 72-3 TPS-49 IEC 61672-3:2006 were ut	NH-25 UC-59 NC-74 e if applicable sed to perform the	2.0 98625 15917 34536109 NC-74-002 periodic tests.
	Rion Rion Rion 1 TP 2.SLM 6167 Procedures from C 61672-1:2002 If YES above the	Firmware Pre Amplifier Microphone Calibrator Calibrator adaptor typ 72-3 TPS-49	NH-25 UC-59 NC-74 e if applicable sed to perform the Number 21 the SLM has succes	2.0 98625 15917 34536109 NC-74-002 periodic tests. .21 / 13.02

61672-3:2006, for the environmental conditions under which the tests were performed. As public evidence was available, from an independent testing organisation responsible for approving the results of pattern evaluation tests performed in accordance with IEC 61672-2:2003, to demonstrate that the model of sound level meter fully conformed to the requirements in IEC 61672-1:2002, the sound level meter submitted for testing conforms to the class 1 requirements of IEC 61672-1:2002.

CERTIFICATE OF CALIBRATION	Certif		e Num Γ20/10			
UKAS Accredited Calibration Laboratory No. 0653	Page	2	of	2	Pages	_

Sound Level Meter Ins	truction manual ar			he sound le	vels in	dicated.	
SLM instruction manual t	itle Sound Leve	Meter NL-42	2 / NL-52				
SLM instruction manual r		11-0)3				
SLM instruction manual	ource	Manufa	cturer				
Internet download date if	applicable	N/A	4				
Case corrections availab	e	Yes	S				
Uncertainties of case cor	rections	Yes	5				
Source of case data		Manufa	cturer				
Wind screen corrections	available	Yes	6				
Uncertainties of wind scr	een corrections	Yes	5				
Source of wind screen da	ta	Manufac	cturer				
Mic pressure to free field	corrections	Yes	5				
Uncertainties of Mic to F.		Yes	3				
Source of Mic to F.F. con		Manufa					
Total expanded uncertain				002 Ye	S		
Specified or equivalent C		Specif					
Customer or Lab Calibrat		Lab Cali					
Calibrator adaptor type if	applicable	NC-74-					
Calibrator cal. date		21 Januar					
Calibrator cert. number		UCRT20					
Calibrator cal cert issued	by	065	3				
Calibrator SPL @ STP		93.98	dB	Calibration	referen	ice sound pre	ssure level
Calibrator frequency		1001.97	Hz	Calibration	check t	frequency	
Reference level range		25 - 130	dB				
Accessories used or corre	ected for during calib	oration - E	xtension C	Cable & Wind	Shield	WS-15	
Note - if a pre-amp extens	sion cable is listed th	en it was used	between t	he SLM and	the pre-	amp.	
Environmental conditions	during tests	Start		End	7		
	Temperature	22.12	_	22.24	±	0.30 °C	1
	Humidity	42.0		39.0	+ <u>+</u>	3.00 %RH	1
	Ambient Pressure	102.70		102.72	±	0.03 kPa	1
Response to associated (ronmental cond	itions abov	/8			_
Initial indicated level		dB		indicated leve		94.0	dB
The uncertainty of the ass						0.10	dB
Self Generated Noise	This test is currently	v not performed	bv this La	ıb.			
Microphone installed (if re				N/A	dB	A Weighting	
Uncertainty of the microph				N/A	dB		
				Range indic	ated	ī	
Microphone replaced with	electrical input device	ce-l IU	K – Under	Nalige India	aleu	1	
	electrical input device A	ce- U C		Range muic	Z	<u> </u>	
Weighting				22.3			
	A .4 dB UR	C 15.8 dl			Z	UR	

The reported expanded uncertainty is based on a standard uncertainty multiplied by a coverage factor k=2, providing a coverage probability of approximately 95%. The uncertainty evaluation has been carried out in accordance with UKAS requirements.

For the test of the frequency weightings as per paragraph 12. of IEC 61672-3:2006 the actual microphone free field response was used.

The acoustical frequency tests of a frequency weighting as per paragraph 11 of IEC 61672-3:2006 were carried out using an electrostatic actuator.

		END		
Calibrated by: B. Bogdan				R 2
Additional Comments The re	sults on this certificate	e only relate	e to the items calibrated as identified abo	ove.

None

Bruel and Kjaer 2250L

CERTIFICATE
OF
CALIBRATION

Date of Issue: 04 November 2019 Issued by: ANV Measurement Systems Beaufort Court 17 Roebuck Way Milton Keynes MK5 8HL Telephone 01908 642846 Fax 01908 642814 E-Mail: info@noise-and-vibration.co.uk Web: www.noise-and-vibration.co.uk Acoustics Noise and Vibration Ltd trading as ANV Measurement Systems

Certificate Number: UCRT19/2218

- CUSTOMER AWN Consulting Limited The Tecpro Building IDA Business and Technology Park Clonshaugh Dublin 17 Ireland
- ORDER No DOD/19/Cal013

Job No UKAS19/11718

DATE OF RECEIPT 01 November 2019

PROCEDURE Calibration Engineer's Handbook, section 25: periodic testing of sound level meters to IEC 61672-3:2006 (BS EN 61672-3:2006) as modified by UKAS TPS 49 Edition 2:June 2009

IDENTIFICATION Sound level meter Brüel & Kjær type 2250-L serial No 3008402 connected via a preamplifier type ZC 0032 serial No 22882 to a halfinch microphone type 4950 serial No 3016830. Associated calibrator Brüel & Kjær type 4231 serial No 2263026 with a one-inch housing and adapter type UC 0210 for half-inch microphone.

CALIBRATED ON 04 November 2019

PREVIOUS Calibrated on 16 October 2017, Certificate No. UCRT17/1897 issued by this laboratory.

This certificate is issued in accordance with the laboratory accreditation requirements of the United Kingdom Accreditation Service. It provides traceability of measurement to the SI system of units and/or to units of measurement realised at the National Physical Laboratory or other recognised national metrology institutes. This certificate may not be reproduced other than in full, except with the prior written approval of the issuing laboratory.

CERTIFICATE OF CALIBRATION

UKAS ACCREDITED CALIBRATION LABORATORY No 0653

The sound level meter was set up using the type 4231 sound calibrator supplied; it was set to frequency weighting A, and initially read 94.1 dB. It was then adjusted to read 93.9 dB (corresponding to 93.9 dB at standard atmospheric pressure). This reading was derived from Calibration Certificate no. UCRT19/2217 supplied by this laboratory and manufacturers' information on the free-field response of the sound level meter. The calibration check frequency was 1kHz. The final microphone sensitivity calculated and stored by the instrument was 45.25 mV/Pa.

Procedures from IEC 61672-3:2006 (BS EN 61672-3:2006) as modified by UKAS TPS 49 Edition 2:June 2009 were used to perform the periodic tests.

RESULTS

The sound level meter submitted for testing has successfully completed the class 1 periodic tests of IEC 61672-3:2006 (BS EN 61672-3:2006), for the environmental conditions under which the tests were performed. As public evidence was available, from an independent testing organization responsible for approving the results of pattern evaluation tests performed in accordance with IEC 61672-2 : 2003 (BS EN 61672-2 : 2003), to demonstrate that the model of sound level meter fully conformed to the requirements in IEC 61672-1 : 2002 (BS EN 61672-1 : 2003), the sound level meter submitted for testing conforms to the class 1 requirements of IEC 61672-1 : 2002 (BS EN 61672-1 2003).

The self-generated noise recorded with the microphone replaced by the electrical input device was:

13.4 dB (A) 13.8 dB (C) 19.5 dB (Z)

The environmental conditions recorded at the start and end of testing were: Start: 23 to 24 °C, 31 to 41 %RH and 97.2 to 97.3 kPa End: 24 to 25 °C, 34 to 44 %RH and 97.2 to 97.3 kPa

Technical information including adjustment data specified in the manufacturers' Instruction Manual BE 1774-11 (2007) and User Manual BE 1766 has been used to carry out this verification. These data include manufacturer-specified uncertainties.

Publicly-available evidence has been found that the B&K 2250-L sound level meter design has successfully undergone pattern evaluation in accordance with IEC 61672-2:2002 (BS EN 61672-2:2003) by Physikalisch-Technische Bundesanstalt (PTB), an independent testing organisation responsible for pattern approvals.

All measurement data are held at ANV Measurement Systems for a period of at least six years.

The reported expanded uncertainty is based on a standard uncertainty multiplied by a coverage factor k=2, providing a coverage probability of approximately 95%. The uncertainty evaluation has been carried out in accordance with UKAS requirements.

Certificate No UCRT19/2218

Page 2 of 3 Pages

CERTIFICATE OF CALIBRATION

UKAS ACCREDITED CALIBRATION LABORATORY No 0653

<u>NOTES</u>

Any opinions or interpretations which may be expressed in the following notes are not UKAS Accredited.

- 1 All tests were carried out in "Broad Band".
- 2 Windscreen correction was set to "None", soundfield to "Free-field" and microphone to "4950".
- 3 No suitable microphone frequency response information was supplied with the instrument. It was therefore measured by this laboratory using the electrostatic actuator method. This response in isolation is not UKAS Accredited.
- 4 It was noted that in order to obtain the correct A-weighted response to the sound calibrator, the relevant software setting in the meter had to be changed from '4231' to 'custom' with the appropriate calibration level entered.
- 5 The electrical tests have been carried out with the instrument set for the nominal microphone sensitivity, as specified in the Instruction Manual. This may mean that the instrument has a slightly different linearity range when in normal use.
- 6 Typical case reflection factors specified by the manufacturer have been used for this verification.

Module i.d.	Function	Version	Active?	Licenced?	Template used?			
BZ 7130	SLM	4.7.5	Y	Y	Y			
BZ 7131	Octave analysis	4.7.5	Y	N	N/A			
BZ 7132	1/3-oct analysis	4.7.5	Y	Y	N/A			
BZ 7133	Logging	4.7.5	Y	Y	N/A			
BZ 7226	Signal Recording Option	4.7.5	Y	N	N/A			
BZ 7231	Tone Assessment	4.7.5	Y	N	N/A			
BZ 7232	Noise Monitoring Software	4.7.5	Y	N	N/A			
BZ	N/A	N/A	N/A	N/A	N/A			
BZ	N/A	N/A	N/A	N/A	N/A			
BZ	N/A	N/A	N/A	N/A	N/A			

The instrument was running on hardware version 4.0 The instrument firmware settings were:

The results on this certificate only relate to the items calibrated as identified above.

Certificate No UCRT19/2218

Page 3 of 3 Pages

Rion VM-56 (S/N 680043)

CERTIFICATE OF CALIBRATION

Date of Issue: 01 November 2019 Issued by: ANV Measurement Systems Beaufort Court 17 Roebuck Way Milton Keynes MK5 8HL Telephone 01908 642846 Fax 01908 642814 E-Mail: info@noise-and-vibration.co.uk Web: www.noise-and-vibration.co.uk Acoustics Noise and Vibration Ltd trading as ANV Measurement Systems		Certificate Number: TCRT19/1 Page 1 of 3 Approved Signatory	825 Pages
Client AWN Consulting Limited The Tecpro Building, IDA Busine Dublin 17 Ireland		s & Technology Park, Clonshaugh	
Purchase Order No.	DOD/19/Cal03		
Instrument	Rion VM-56 Tri-Axial Vibration Me	er	
Serial No.	00680043		
Accelerometer Type	VM-56		
Accelerometer Serial No.	80047		
Program	2.0		
Client Asset No.	N/A		
Procedure ID.	VM-56 Issue 1		
Job Number	TRAC19/11477		
Date of Calibration	01 Nov 2019		
Previous Cert. number	N/A		
Date of Previous Cert.	N/A		
Rig Number	6		
Kit Number	24		
Calibration Status	Passed Calibration		

This calibration is traceable to National Standards. ANV Measurement Systems sources used to perform calibrations are calibrated at the National Physical Laboratory or by UKAS laboratories accredited for the purpose.

The performance of the system (the meter, accelerometer) was found to be within the manufacturer's specification.

<u>Comment</u> This certificate reports recorded values for the instrument 'As Received'.

Certificate Number TCRT19/1825 Page 2 of 3 Pages

Environment

The ambient environmental conditions at the time of the calibration were;

Temperature: 22.9 \pm 1°C, Humidity: 40 \pm 5%RH, Atmospheric pressure 98.2 \pm 1 kPa <u>Test results</u>

Each accelerometer axis was mounted co-axially with a Rion LS-10C servo accelerometer, and tests conducted for the dynamic range, PPV linearity and frequency response of the complete system. Additional electrical tests were carried out on the amplitude linearity of the instrument.

PPV linearity response for the complete system at 16 Hz Weightings for all channels turned OFF

With PV-83CW serial No. 80047

Target Vel.	Actual Vel.	Indicated (X)	Error (X)	Indicated (Y)	Error (Y)	Indicated (Z)	Error (Z)	
mm/s	mm/s	mm/s	%	mm/s	%	mm/s	%	
0.50	0.51	0.57	11.56	0.55	7.65	0.54	5.69	
1.00	1.02	1.09	6.67	1.08	5.69	1.06	3.73	
2.50	2.55	2.67	4.51	2.66	4.12	2.60	1.77	
5.00	5.11	5.31	3.93	5.30	3.73	5.18	1.38	
10.00	10.13	10.59	4.50	10.43	2.92	10.35	2.13	
20.00	20.27	21.24	4.80	21.03	3.76	20.61	1.69	

Permitted tolerance ± 10% ± 1 LSD (Least Significant Digit).

Linearity errors in dB measured electrically at 40 Hz

Weightings for all channels turned OFF

Level changes in dB; reading error in dB given for each axis. "m/s²" is actual reading in m/s².

1 m/s² Range

Level dB	Error (X) dB	m/s² (X)	Error (Y) dB	m/s² (Y)	Error (Z) dB	m/s² (Z)
0	REF	0.98154	REF	0.98129	REF	0.98130
-20	-0.01	0.09805	-0.01	0.09802	-0.01	0.09803
-40	-0.02	0.00979	-0.02	0.00979	-0.02	0.00979
-60	-0.10	0.00097	-0.10	0.00097	-0.10	0.00097
-66	-0.03	0.00049	-0.21	0.00048	-0.03	0.00049
-72	-0.23	0.00024	-0.23	0.00024	-0.23	0.00024

Permitted tolerance ±1.0 dB.

10 m/s² Range

Level dB	Error (X) dB	m/s² (X)	Error (Y) dB	m/s² (Y)	Error (Z) dB	m/s² (Z)
20	-0.03	9.79122	-0.03	9.75526	-0.03	9.73534
0	REF	0.98208	REF	0.97857	REF	0.97679
-20	-0.01	0.09808	-0.01	0.09775	-0.01	0.09758
-30	-0.01	0.03102	-0.03	0.03085	-0.06	0.03067
-40	0.04	0.00987	-0.02	0.00976	0.02	0.00979
-52	-0.31	0.00238	0.69	0.00266	-0.01	0.00245

Permitted tolerance ±1.0 dB.

Certificate Number TCRT19/1825

Page 3 of 3 Pages

Frequency Responses For Complete System

MEASUREMENT STATEMS

Measured on the 1 m/s² range with weightings as indicated in the table and PV-83CW serial No. 80047

Frequency Hz	Applied Acc. m/s ²	X (Wd) rms m/s ²	Error X %	VDV (X) m/s ^{1.75}	Error X %
3.981	0.285	0.15654	5.4	0.30765	5.3
5.012	0.355	0.15445	5.2	0.30359	5.1
6.310	0.355	0.12187	5.1	0.23974	5.0
7.943	0.355	0.09586	4.5	0.18849	4.4
10.00	0.355	0.07622	4.9	0.14987	4.8
12.59	0.355	0.06052	5.3	0.11912	5.3
15.85	0.355	0.04836	6.2	0.09515	6.2
19.95	0.550	0.06014	7.3	0.11834	7.3

Frequency Hz	Applied Acc. m/s ²	Y (Wd) rms m/s ²	Error Y %	VDV (Y) m/s ^{1.75}	Error Y %
3.981	0.285	0.15640	5.3	0.30743	5.2
5.012	0.355	0.15372	4.7	0.30199	4.5
6.310	0.355	0.12149	4.7	0.23878	4.6
7.943	0.355	0.09627	5.0	0.18928	4.9
10.00	0.355	0.07622	4.9	0.14987	4.8
12.59	0.355	0.06054	5.3	0.11907	5.3
15.85	0.355	0.04850	6.5	0.09539	6.5
19.95	0.550	0.06064	8.2	0.11932	8.2

Frequency Hz	Applied Acc. m/s ²	Z (Wb) rms m/s ²	Error Z %	VDV (Z) m/s ^{1.75}	Error Z %
3.981	0.285	0.26307	3.0	0.52192	3.8
5.012	0.355	0.37779	2.4	0.74853	3.1
6.310	0.355	0.38731	2.1	0.76723	2.7
7.943	0.355	0.37632	2.0	0.74338	2.4
10.00	0.355	0.35641	1.6	0.70262	1.7
12.59	0.355	0.32928	1.2	0.64883	1.3
15.85	0.355	0.29668	1.3	0.58400	1.3
19.95	0.550	0.39872	0.8	0.78497	0.8
25.12	0.550	0.33640	3.3	0.66184	3.3
31.62	0.550	0.27597	2.9	0.54310	2.9
39.81	0.550	0.21843	1.0	0.42982	1.0
50.12	0.550	0.17703	3.4	0.34836	3.3
63.10	0.550	0.13695	3.8	0.26950	3.8
79.43	0.550	0.10077	4.1	0.19832	4.1

Tolerance required @ 4 Hz to 63 Hz +12%/-11% ; @ 80 Hz +26%/-21%

All results meet the manufacturer's specification.

END OF CALIBRATION

CALIBRATED BY :- A. Lloyd

5 Unattended Monitoring Equipment Set Up

Location

CBC0006UNML001

Equipment Set up

On driveway in residential front garden to northwest of Mount Andrew Court, to south of N4. In line with closest residential facades to west in Hermitage Way estate, approximately 12m from N4 road edge.

Lucan to City Centre Core Bus Corridor Scheme